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Abstract. In this paper we present a new numerical method to Isst mean-field ideas in the 
king spin glass at finite dimensions. Very large sizes can be studied and numericd results are 
presented in the case of the four-dimensional king spin glass. New exponents are introduced 
within the spin-glass phase and we find evidence of a phase with replica broken features. 

1. Introduction 

Replica symmetry breaking [1-3] apparently correctly describes the behaviour of spin 
glasses in the infinite range limit, [4].  It ~ would also be. very interesting to understand 
whether it is also a correct description of shoa-ranged spin glasses in finite dimensions. 

It has been shown~that in sufficiently high dimensions ‘the pertubative corrections to the 
mean-field approach based on replica symmetry breaking are finite, so that it is reasonable to 
assume that the replica approach is correct above a lower critical dimension, which has not 
yet been identified [SI. Of course it is very difficult to dismiss theoretically the possibility 
that there are non-perturbative effects which destroy replica symmetry at finite dimensions. 

In order to clear tbe theoretical situation, we have studied numerically short-ranged spin 
glasses in four dimensions in order to see whether their behaviour is the one suggested by 
replica symmetry breaking. We have decided to study this question in four dimensions for 
several reasons: 

(i) We hope that dimension four is sufficiently above the lower ,critical dimension so 
that corrections to the mean-field approximation are not too large. 

(ii) In dimensions geater that four it is time consuming (and memory demanding) to 
study lattices of large linear size. 

(iii) It is. known that in dimension four the dynamics is sufficiently fast so that the 
phase transition and the behaviour can be studied within a reasonable amount of time on 
commercial computers. 

There are already. numerical studies in four dimensions which confirm some of the 
predictions of the mean-field approach, i.e. the existence in the non-zero magnetic field of 
the de Almeida-Thouless  line^ [6,7], where the correlation length (and consequently the 
spin-glass susceptibility) diverges, the non-vanishing of the function P(q)  at q = 0~[8] and 
the scaling of the approach to equilibrium in terms of the v ~ a b l e  T ln(t) [9]. Unfortunately 

0305-4470/93/236711+20$07.50 @ 1993 IOP Publishing Ltd 6711 



6712 

these studies (apart from the last one) have been done on relatively small lattices (up to a 
linear size L = 6-7) and they are quite difficult to extend to high values of L. 

In  this paper we follow a different strategy which allows us to verify some of the 
crucial predictions of replica theory for much larger sizes (i.e. up to L = 18). Results 
for small sizes regarding the investigation of finite-size scaling laws within the spin-glass 
phase, ultrmetricity and questions concerning the dynamics are presented in a forthcoming 
paper [lo]. 

This paper is divided as follows. In section 2 we introduce some general ideas regarding 
the nature of the spin-glass phase according to mean-field theory and we recall the energy 
overlap which has proved to be very useful. Section 3 introduces the definitions of the 
critical exponents and sections 4 and 5 present numerical results for the critical point and 
below it respectively. Section 6 presents some conclusions. 

G Purisi md F Ritori 

2. General theoretical predictions 

In this section we will present some of the results of broken replica theory for spin glasses 
(in the mean-field approximation), which can probably be extended mutatis mutandis to 
other systems. 

In the replica approach it is crucial to consider the behaviour of a system composed of 
two identical replicas. More precisely we have two spins systems (the spin variables being 
uj and rj) with total Hamiltonian 

H(’) = H,[CJ] + ~ , [ r ]  (1) 

where H, is the usual Hamiltonian which depends on the random variables J. ,  
Broken replica theory predicts the existence of many possible equilibrium states for 

each of the two replicas [ 1 I]. These states have similar macroscopic properties (like intemal 
energy, magnetization). In order to point out the existence of these equilibrium states it is 
convenient to define the overlap q between the two replicas as 

For each finite system of size L we can define a function PJ(q) ,  which depends on the 
variables J’s. We can also define the function 

- 
P ( q )  = W q )  (3) 

where the bar denotes (as usual) the average over the J’s .  
In the limit when the volume ( N  = LD) goes to infinity the function P(q)  has its 

support in the interval qm-qM, with two delta functions at the end of the interval. This 
is the generic situation in non-zero magnetic field [12]. In the limit where the magnetic 
field goes to zero, qm goes to 0 and the corresponding delta function disappears. When the 
magnetic field is strictly zero, the function P(q)  is symmehic (under the exchange of 4 
with -9) and often one shows only P ( q )  for positive q. 

It is interesting to note that the function P ( q )  strongly fluctuates from system to system 
inside the interval qm-qM, indeed one finds that 
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These predictions are quite clear and, in principle, could be easily tested. Unfortunately, 
in doing Monte Carlo simulations we can measure the function P,(q) only if we wait a 
time which is sufficiently large to allow for the system to have explored all possible~states 
and have done a non-negligible number of transitions among the lower-lying states. The 
equilibrium states are separated by barriers, whose height should go to infinity as a power 
of N ,  and for large volumes such a time becomes so large that it is impossible to do such 
a long numerical simulation. We would also reach similar conclusions if we consider real 
experiments (supposing that the measurement of individual spins would be possible). In 
other words, the function P J ( q )  cannot be measured for large systems. 

The difficulty in obtaining the correct P,(q) from experiments (real or numerical) is 
connected to the fact that ln(P,(q)) is not an intensive quantity [13]. Fortunately, the replica 
symmetry breaking approach also gives predictions for other quantities, which are intensive 
and can be measured much more easily. 

Let us consider a system with two replicas which are now~coupled one to the other: 

It is interesting to study the function q ( c ) ,  i.e. the expectation value of the~overlap as a 
function of E .  An explicit computation shows that [14] 

l i  =qw lim = q m  
6+0+ 6-0- 

A first-order phase transition is present at E = 0. Such a phase transition should be detectable 
in times which are not exponentially large. 

The quantity qM has the physical meaning of’the overlap inside the same state and is 
also called the Edwards-Anderson order parameter (qBA). In principle we could measure 
qM by considering the time dependence of the overlap of two replicas (using any local form 
of dynamics) in the case in which we have imposed the same initial (equilibrium) condition 
at time zero. In the case of very large volume the two replicas would remain in the same 
state (for a long but not exponentially long time) and their mutual overlap would be qM. 
Indeed we expect that the jump from one to another equilibrium state takes a time which 
is exponentially large compared with the size of the system [15]. 

By the same token, if for the two replicas we set uncorrelated initial conditions at time 
0, their overlap should be in the same time region qm. Indeed the two replicas will evolve 
toward two different equilibrium states and the two generic states will have overlap qm. A 
similar effect is present if we consider two replicas at slightly different magnetic fields. In 
this case the overlap between the two replicas will also be qm. 

It is quite interesting that the mean-field approximation predicts quite peculiar behaviour 
for the function q ( e )  [16]. Indeed one finds that, for small E ,  

The susceptibility ,ys = aq/& diverges in the limit E + 0. In this limit it is interesting 
to study the connected correlation function 
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where 
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At large distances we naively expect an exponential decay 

G&) 2 exp(-il&) 

where cq is the relevant correlation length 
As far as 

the correlation length tq must diverge at the transition point. 
From the thermodynamic point of view such behaviour is characteristic of a spontaneous 

breaking of a continuous symmehy: the point E = 0 is a first-order transition point, because 
of the discontinuity of q and it is also a second-order transition point at which the correlation 
length diverges. This property is probably at the root of many of the peculiar properties 
of spin glasses and it is the physical manifestation of the breaking of the replica symmetry 
in a hierarchical way 1171. This result of the infinite-range model is in agreement with 
direct analytic computations done in the spin-glass phase. Indeed it has been found that 
the correlation functions decay as a power law of the distance in the spin-glass phase [18]. 
Differeat exponents are expected to be present according to the correlation function one is 
considering. 

As usual it is useful to consider the free energy per site as function of q ,  which is equal 
to 

In other words we constrain the two non-interacting replica systems to have a fixed overlap 
q. Standard thermodynamical arguments imply that 

aFiaqiq=q(,) = 6 .  (13) 

The function F ( q )  does not depend on q in the whole interval qm-qM, while, for q 
slightly outside this interval, 

where SF is the variation in the free energy for configurations [U, r ]  with overlap outside 
the interval [qM<m] with respect to the free energy of those configurations in which q lies 
inside the same interval. 

The A’s are related to the C’s according to 

3A+(C+)* = 3A-(C-)* = 1. (15) 

This behaviour of the free energy is related to the behaviour of the function P ( q )  in 
the tail, i.e. outside its support in the infinite volume l i i i t  (the interval qm-qM). Indeed in 
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the region where q is slightly outside this interval we expect that the function P ( q )  will 
behave as 1191 

p(q)  a exp(-NA+(q - 4 d 3 )  4 > 4~ 
(16) 

p(q)  exp(-NA-(qm - 4)') 4 < q m . ~  

Such a result is correct for fixed q and N going to infinity, however we.also expect that it 
will remain essentially correct in the region where N ( q  - 4 ~ ) '  is large. 

More precisely, we can assume that the function P ( q )  is a homogeneous function of 
N and q - q ~ .  If the function P(q)  behaves as a delta function at q = q~ in the infinite 
volume limit, simple scaling arguments imply the following behaviour in the whole region 
of small q - 

P(q)  = N1/3f(N(q - qM)3)  (17) 

where the function f(z) should behave as exp(-A+z) for large values of z. Similar 
considerations could be done f o r ~ q  < ym. The exponent f is related to the existence 
of a delta-type singularity in P(q)  and it should be modified if such a singularity is absent. 
The same arguments imply that there are finite-size corrections to equation (17), which are 
present as soon as the quantity Ne3/' is not very large. 

Direct study of the function P(q) ,  which can be done on small samples, gives similar 
information and complements the information obtained by introducing a coupling among 
replicas in the Hamiltonian [lo]. It should be stressed that, if we work at fixed E and send 
N to infinity, we introduce a perturbation proportional to N ,  so that all equilibrium states 
will be relevant, together with those which give a contribution to P ( q )  which vanishes as 
exp(-aNCL), with 01 < 1 (this is because we are adding a perturbation which is of order N ) .  

The existence of different values for qm and q~ is a clear signal for the existence of at 
least two different equilibrium states. We can ask how much these states differ from each 
other. Let us consider the case with zero magnetic field. It is possible that the z variables 
have opposite magnetization to the U variables and consequently the overlap is equal to 
- q ~ .  We can reject this trivial possibility by considering only the case where 4 is positive. 

However in spin glasses (and also in ferromagnetic systems) we can construct domain 
states, in which the t variables have opposite magnetization to the U variables in a domain 

and the two magnetizations are equal in the complement of 'D. If Z, is compact, these 
configurations have the same free energy density as those in which the T variables have the 
same magnetization as the U variables everywhere. A very relevant question is whether all 
the different equilibrium states of the system can be obtained from each other in this way 
or whether there are pairs of states which cannot be so trivially related to each other. 

This question may be addressed by considering the overlap in energy introduced in [ZO] 
to study the three-dimensional Isiug spin glass in a magnetic field. In that work it was shown 
that the spin-glass phase can be understood within the framework of the droplet theory only 
if droplets had fractal dimesion equal to three (the dimension of the lattice). Two domain 
states have the same energy density nearly everywhere, the energy density differs only on 
the boundary of the domain; if we consider only their energy density, not the magnetization 
density, these two states will differ by a negligible amount in the infinite-volume limit. 
Indeed the difference in energy density will be concentrated only on the boundary of 'D and 
it becomes Gelevant in the infinite volume limit. 

In order to be more quantitative it is convenient to introduce the energy density for the 
U variables (which we suppose to be localized on the bonds among spins), defined as 
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The energy overlap is thus given by 

where the constant c = (1/N) xi,k J:k has been inserted in order to impose the useful 
normalization condition qe = 1 for r = U .  

The analysis we have done for q can be repeated for qe ,  If the coordination number is 
infinite, as in the SK model, one finds that 

(19) 

so that no extra information can be extracted from 4'. This is quite reasonable, because 
domain states are forbidden in the infinite-range model. Domain states may exist only 
because the surface grows slower than the volume so that surface effects may be neglected 
with respect to bulk effects. However, the surface-to-volume ratio in dimensions D scales 
as N-' lD so that this ratio is volume independent when D + w~. It should not be a surprise 
that domain states are suppressed in the infinite-range limit which is quite similar to the 
infinite-dimension limit. 

qc = q 2 

We can thus consider the following coupled replica system with Hamiltonian 

H" = H,[U] + H,[S] - 6.Nqc = H,[U] + H,[S] - c J t k q i q k .  (20) 
4 c .  

In a similar way we find in the mean-field approximation in non-zero magnetic field that 

In the SK model the quantities appearing in the previous equation can be simple related to 
those of equation (7) using the relation (19). At zero magnetic field q; goes to zero, but 
this is an artefact due the infinite coordination number. 

We can consider equations (7) and (21) as the key predictions of a naive replica approach 
in which all effects due to finite dimensions and the short-range nature of the forces are 
neglected. (It is quite possible that the exponent f is modified at sufficient low dimensions.) 
Summarizing we have seen that 

(i) 6q = q,,, - qm # 0 implies the existence of different pure states; 
(ii) 6qe = qR - q; # 0 implies that the different pure states are not domain states, i.e. 

they are not locally the reverse of the others; and 
(iii) the dependence of the overlaps as a non-integer power of the perturbation ( e )  

implies the divergence of the correlation length in the absence of an external perturbation. 
We will see later how these three properties can be verified to hold in the four- 

dimensional short-range spin-glass model. 

3. Critical exponents 

If we study spin glass in the high-temperature phase the renormalization group approach 
does not reveal any strange behaviour, at least at zero magnetic field. Critical exponents 
are those predicted by mean-field theory in dimensions greater than six. 
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Only two independent In less than six dimensions non-trivial exponents appear. 
exponents (q  and v) conhol the critical behaviour of most quantities. One finds that 

f g  c( r-' Xq c( 5-7 (22) 

where r = IT - TJT& T, being the critical. temperature and 

y = (2 - v)v. 

Theoretically there are no signs of violation in less than six dimensions of the 
hyperscaling relations 

a = Z - D v  (24) 

which relates the exponent for the specific heat (C o( 7-9, to the exponent v. The relation 
is satisfied in dimensions not greater than six (the mean-field  value for a is -1). 

In the field-theoretical approach only two operators have dimensions less than D :  the 
overlap Q0&) and the energy density, which is proportional,to Qi,b(x).  The energy 
overlap density is given by Q:,b(x), so in the continuum limit it scales in the same way 
as the energy. The crucial quantities are the dimensions of these operators, which (in 
inverseof-length units) are given 6y 

dq = i ( D  - 2 +  q) 

d , = D - l / v = ( l - a ) / v .  

In high dimensions,' where mean-field exponents are exact, d ,  = 2dq. This relation does 
not hold in less than six dimensions, where d, =- 2dq. 

I f  we stay at the critical point and we add a term proportional. to E q ,  we find that 

q ( 6 )  c( &l(D-dd E E%. (26) 

In a similar way if we add a term proportional to 6.q' in the Hamiltonian~ we would 
find an irregular term given by 

qe(6 , )  - @(0) c( 6 y D - 4 )  = E?. (27) 

However there is also a regular term q e ( E e )  - qe(0) c( E, which dominates for small values 
of so that the dependence of qe on is smooth (we recall that d , / ( D  -de)  = -a + 1, 
which is two in six dimensions and it is likely higher than two in dimensions less than six. 
In this case we should get that wee = 1. 

On the other side we should have (adding a term eeqe to the Hamiltonian like in 
equation (20) and computing the overlap uu or tt which is q ( E e ) )  

where oqe = j3, which in this context it is the exponent for the order parameter (Aq c( tp). 
In this first case (coupling a term 6 q  to the Hamiltonian as in equation (5)) the scaling laws 
imply that 

(29) q c ( E )  - @(0) c[4 /KJ-dq) l (41dq)  E E%. 
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Here one finds the following relation among the overlaps: 

f ( € )  - qyo) cx S(€)(d"d'). 

G Parisi and F Ritort 

(30) 

Summarizing there are four exponents which can be measured (oqq, wqL, ocq, w,,), the 
last being identically one (wee = 1). The three non-hivial exponents depend on only two 
standard critical exponents, so that we can extract them with some confidence. 

Below the critical temperature. it is possible that the relations (7) and (21) are not 
modified. ~~ 

A similar phenomenon happens for Heisenberg ferromagnets, where the longitudinal 
susceptibility (XL) diverges as h-', h being the magnetic field. It is also possible that the 
exponent 

In this case one should introduce new critical exponents (e.g. tqq and tee) such that 
is modified at finite dimensions. 

q ( ~ )  = q + E+& 

q e ( E e )  = qe - E+(& 

E > O  

Ec > 0. 

The value of the exponents t ' s  should be equal to in the mean-field approximation but 
is quite possible that they become different from f in dimensions less than six. A detailed 
analytic computation is needed to clarify this important issue. 

In any case the scaling laws imply that the discontinuity in the overlap in the low- 
temperature region scales as 

(31) 

Aq(r) cx r4" Aqe(r) cx id,". (32) 

In this article we will mainly concentrate our efforts in proving the non-vanishing of the 
discontinuities and of the divergence of the spin-glass susceptibility. We will not pay too 
much attention to the precise determination of the exponents. 

4. Simulations at the critical temperature 

Here we will study the four-dimensional nearest-neighbour interaction model with discrete 
couplings (rtl). The single replica Hamiltonian is given by 

where the sum runs over all the pairs of nearest-neighbour points of a four-dimensional 
cubic lattice (the coordination number is 8). The couplings J s  are randomly chosen with 
equal probability k.1. The lattices we study will contain N = L4 spins, with periodic 
boundary conditions. 

For this model the energy overlap qe simply becomes 

where the sum runs over nearest-neighbour points. 
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A finite-size analysis of the susceptibility xq on lattices of size from 3 to 7 [7] and 
hi&-temperature expansions [21] shows that there is a transition at T, = 2.0210.04, which 
is characterized by a divergence of the spin-glass susceptibility. The reported values of the 
exponents are = -0.25 f 0.1 and U = 0.70 + 0.2 [7], in good agreement with the results 
obtained for the four-dimensional model on the same lattice with couplings which have a 
Gaussian distribution 1221. 

We tentatively assume that the critical tenperature has been correctly determined and 
we study the dependence of q and qe on E and ce at T = T,. 

To this end we consider a two replica system and we add a coupling between the replicas 
of the form €9, as discussed in section 2. We slowly cool the system from high temperature 
to the critical temperature in the presence of a field E .  Subsequent measurements are done 
at decreasing values of E (we have chosen to decrease E by a factor 2 each time). At each 
value of E the first 20% of the simulation is disregarded, because we fear the system may 
not have reached equilibrium. The dependence'of the overlaps on the Monte Carlo time is 
monitored in order to find out the existence of unwanted systematic drifts in the remaining 
80% of the simulation, which is used for the measurements. 

The simulations we present now are done on a 1S4 system. The number of Monte Carlo 
steps at each value of E is IO3~-'/*. The number of steps increases when E goes to zero in 
order to fight against critical slowing down, the exponent being an arbitrary choice. The 
quantities that we are considering should not fluctuate in the infinite-volume limit, so that 
the sample-to-sample fluctuations should be relatively small and this is confirmed by doing 
simulations on other systems. 

0.001 0.01 0.1 1 
E 

Figure 1. The value of the overlaps q and qe as function of B at the critical point (Tc = 2.02) 
on a lattice of sire L = 18. The fits are done according ta equations (26) and (29) and give 
opq = 0.29, = 0.67. The symbols are: triangles (q) ,  squares (4'). 

In figure 1 we see the overlaps as function of E for E in the range T3-2-". We display 
the fits done according to the equations in the previous section. The corresponding values 
of the w's are 

wqq = 0.29 wrq = 0.67. (35) 
In figure 2 we show the same results in which we plot qe against q. The results in both 
cases are quite similar. The fits gives for the ratio of the dimensions d,/dq the value 
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1 ._ 

w -1- 

Figure 2. The overlap qs against q; the fit done according to equation (30) gives dEld, = 2.63. 

It is difficult to attach a meanful error to those numbers. The statistical errors can be 
obviously computed, but its value would be unreasonable small. The real uncertitude comes 
from the fact that the scaling law a e  valid in the limit E -+ 0 and for finite E there are 
corrections to the scaling law which we do not control. Some estimates on the error may 
be obtained by changing the procedure we  use to fit the data. 

To this end we have found it useful to slightly modify the definition of overlap. In order 
to have simple fits which work better and to decrease the saturation effects for q close to 
1 ,  we find it slightly more convenient to consider plotting the quantity 

h, tanh-'(q) (37) 

instead of q. The physical meaning of h, is clear: if we consider two replicas with a 
single spin on each replica, the expectation value of the overlap will be equal to q if the 
Hamiltonian (multiplied by ,6) is equal to h p r .  

For the same reason we introduce the quantity 

he tanh-'(q'). (38) 

In figure 3(a) we show the same data as in figure 2 but using these new variables. There 
is a small impovement; the fits agree sIightly better with the data, although this is hard to 
see with the naked eye. From the fits one finds the U'S are 

oqq = 0.33 mi, = 0.68 (39) 

Fom this data one could estimate oqq = 0.31 i 0.02, however a similar estimate (e.g. 
0.67 + 0.01) for o,, is not safe. Indeed the internal energy should scale exactly as qe at the 
critical point. If we plot the internal energy as a function of E (see figure 3(b)) one finds 
that the corresponding value of the exponent is 

This discrepancy is not so strange because if w., is near to 1, one should take into account 
the regular term and fit the data as 
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0.1 

(a )  0.001 0.01 E 0.1 1 

3.65 
i 

,/ - 
3.45 i 

( 6 )  0.003 0.01 E 0.1 1 

Figurr 3. (a) The same  data^ as figure 1 with h, and h, instend of q and qe, The fits give 
oqq = 0.33, a,, = 0.68, (b) the intemal energy as a function of fq, the fit gives oeq = 0.75. 

Such a four-parameter fit can be done and it gives in both cases (energy and energy overlap) 
a value of we9 in the range 0.8-0.9, but such a result may only be indicative. In any case the 
need to add an exma term (linear in E ) ,  which is not universal, may explain the difference 
in the estimate of oeq when we change the observable. 

In the l i t  in which oe9 = 1 one obtains E In(€) dependence. In order to see whether 
this possibility can be dismissed, we have plotted the data for qe against --E In(€) in figure 4. 
A linear fit can be accepted. 

., ~ 

At this stage we can only say that . .  

0.66 < oaq < 1. (42) 

These values implies that d9 = 0.95 + 0.05 and correspondingly q = -0.1 f 0.1. In 
a similar way we find that de falls in the interval 2.2-3, corresponding to U in the interval 
0.55-1. The result for Y is probably correct but it does not carry too much information. 

We have also done simulations in which we add ~a coupling between the replica of 
the form eeqe. In this case symmetry arguments imply that the expectation value .of q 
is identically zero. Here we substitute (q)'" or (141) for~it. A similar substitution in the 
previous case would not make too much difference and it would be negligible in the infinite- 
volume limit. In thefollowing we will not pay too much attention to the difference between 
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: /* 
T /A 

, , , ,  

Figure 4. The data for qc as a function of --E In(€). A linear dependence is very mmpatible 
with the data and corresponds to oeq = 1 with logarithmic corrections. 

~, 

0.001 0.01 0.1 

Figure 5. The value of the overlaps h, and h, as a funclion of 4. The fits give ogZ = 0.64, 
while o,, = 1 has been imposed. 

these quantities and they will be denoted by q. The results are shown in figure 5 for E ,  in 
the range P - 2 3 .  The values of the exponent fi  from the fit is 

os. = 6 = 0.64. (43) 

Using the scaling law p = dqv one finds that U = 0.67, which is a rather reasonable 
value. 

These results are well compatible with those obtained from other methods (such as 
expansions near infinitetemperature or finite-size scaling) although the determination of U 
is not very precise. 

As the reader can see, a relatively small value of E also produces relatively large 
effects, however it might not be wise to go to too small an E ,  where finite-volume effect 
and thermalization problems lurk. 

Summarizing, the method we have introduced for studying the overlaps as a function 

, .. 
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of the parameter E can be used to compute successfully the dimensions of the relevant 
operators and there are no unwanted surprises. 

We have also done numerical simulations at the critical temperature for smaller systems 
and they will reported elsewhere [lo]. 

5. Numerical results for large systems below T, 

We have first studied the behaviour of q against E below the critical temperature, mainly at 

Simulations have been~done for different systems with sizes that range from 8 to 18 for 
E in the range 2-2-2-6. We have obtained the data by cooling the system with the largest 
value of E ,  which has been slightly removed. The data for q are shown in figure 6 for 
several sizes. One does not see any systematic drift with the size. 

T = 1.5 N 0,747''. 

0 0.1 0.2 0.3 0.4 0.5 0.6 

& 

Figure 6. The dependence of q on E at T = 1.5 for L = 8.10.12, 14,18. The broken line is a 
linear fit to the data at L = 14. 

The approximate linearity of the data against E'/* implies the presence of a non-trivial 
power dependence of q on E and of a divergent susceptibility in the limit E + 0. This 
conclusion is reinforced by studying the behaviour of the correlation length among the 
overlaps. A tentative extimate of the correlation length as function of E has been obtained 
for the L = 1g4 system and it is shown in figure 7. We clearly see a sign of a divergence 
of the correlation lengh when E goes io zero. 

In order to better investigate~the exponents which characterize the divergence of the 
overlap susceptibily we have performed longer simulations at smaller values of E .  The data 
are shown in figures 8 and 9. One sees that a fit of the form 

fits the data reasonably well, the coefficient E being smaller if we substitute q by h,. 
It is possible to fit the data using a different exponent 

q(6)  = q(0') + A &  (45) 
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0 0.05 0.1 0.15 0.2 0.25 0.3 
e 

Figure 7. The dependem of tq on 6 at T = 1.5 for L = IS'. The fit is a power law of the 
farm 

0 0.1 0.2 0.3 0.4 0.5 0.6 
EiiZ 

Figure 8. The dependence of q and h, on f at T = 1.5 for L = 18; the fits are of the form 
q(e) = q(0) + Afl /*  + B E .  

with tq4 = 0.33 if we fit q and tqq = 0.39 if we fit h,. 
For the quantity qe as a function of q2. data have been obtained for various values of 

E at T = 1.5. These data show the existence of a non-vanishing qBA order parameter with 
a power dependence on E ,  with a power in the range 0.35-0.5. 

In figure 10 one shows the energy overlap qet as function of q2. Approximatively linear 
behaviour is observed. We recall again that in the infinite-range model the energy overlap 
is an exactly linear function of q2. 

The next issue is the verification of a discontinuity in q and qe at E,  = 0, as predicted 
by replica theory. To this end we add a term equal to ecqe to the Hamiltonian density. As 
before we cool a system of size 1S4 for a positive E, at T = 1 and later we remove E ,  at 

t We remark for the careful reader that for lhis case only the energy overlap is defined in a slightly different 
way from the resf of the paper (Ye. assuming that the enagy is concentrared On the sites and not On the bonds): 
1 / N  ci(cx Ji ,kUiUk) (zk  Ji.kri7k). 
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0 . 1 '  0.2 0.8 0.4. 0.5 0.6 
e i / 2  

a 

Figure 9. The dependence of q on E at T = 1.5 for L = 18; the fits are of the form 
q ( ~ )  = q(0) +A&<, with Cqhe = 0.32, q(0) = 0.39 if we fit q ,  Cqq = 0.34, q(0) = 0.40 if  we 
fit h,. 

0.2 0.3 0.6 0.7 
0.4 q 2  a.5 

Figure 10. The quantity qr as function of q', data have been obtained for various values of E 
at T = 1.5. 

fixed .temperature. The data for the energy overlap (defined in the usual way) can be very 
well fitted with a simple formula of broken replica theory: 

(46) 

In the same simulations we have measured the dependence of q on ee, which we display 

q e ( 4  = qe(O+) + A E ~ / ~ +  BE* 

as can be seen in figure I l t .  

in figure 12. Here the data are also compatible with the prediction 

q(ce) = q(O+) +AE:/*  + BE,. (47) 

One should notice that in this case q(0') is not the maximum overlap as found in 
equation (44). The presence of a power of E ,  smaller than 1 implies a divergence of ths 

t In this case h, is defined as h, = d ( q : p ) .  
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0 0.03 0.1 0.15 0.2 
e 

Figure 11. The quantity qr and h, as a function of 4 on an 184 lattice at T = 1.  The fits give 
q,(O+) = 0.47 in both cases. 

0 0.05 0.1 0.15 0.2 
e. 

Figure 12. The quantity q2 and hq as a function of 
both compatible with q(O+) = 0.6. 

on an IS4 lattice at T = 1. The fits are 

spin-glass susceptibilies e.g. aq/as,. This is possible if the correlation length diverges 
when goes to zero. In order to check this prediction we have measured the two-point 
correlation function of the q variable. The data are not very precise, especially at distances 
larger than 4, which would be crucial to obtain a careful measurement of the correlation 
functions. It seems that much longer simulations should be done in order to obtain precise 
data. 

Anyway, the data seem to be compatible with a power-law divergence at 
In order to measure the discontinuities at E ,  = 0 of the order parameters we have cooled 

The data for q2 as function of of the temperature at different E ,  on a 104 lattice are 

t In order to minimize the temperature dependence of the order parameters, we have kept f< fixed when cooling 
the systm for negative f,, while we kept fixed at pmitive f,. 

= 0. 

the system in presence of a fixed field e.?. 
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0 0.5 1 , 1.5 2 2.5 3 
T 

Figure 13. The quantity'q2 as a function of the tempemom T for different values of fa. The 
data for negative ee are the triangles near the q2 = 0 axis. 

0 0.2 0.4 0.6 0.8 1 1.2 
7 

Figure 14. The value of q2 extrapolated at 
q2 c( (T /Z  - 1)*0, with j3 = 0.6. 

= 0. The broken c w e  is a fit of the form 

shown in figure 13. As expected q2 is identically zero at high temperatures and for positive 
6i it becomes different from zero at a transition temperature which is E, dependent. Naively 
one would expect that this transition temperature TC(ce) would be a linear function of 
for small E,. We have not checked whether this naive prediction is compatible with the 
results obtained from the renormalization group near six dimensions. Linear behaviour 
is not incompatible with the data, but we have not carefully investigated this point. The 
transition at TC(ee) definitely belongs to a different universality class from the usual spin- 
glass transition. Simple arguments using the effective Hamiltonian for two coupled replicas 
suggest that this transition is in the same universality class as the disordered ferromagnetic 
king model in the value of the coupling. For such a transition one expects that the exponent 
@ would be equal to its mean-field value i, apart from logarithmic corrections, so that q2 
should vanish approximatively linearly as a function of the temperature. This behaviour is 
not in disagreement with the data, although this point should be investigated more carefully. 
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Figure 15. The quantity qr as a function of the temperature T for different values of e*. The 
data for negative 4 are the triangles near the q = 0 axis. 

The extrapolation at E ,  = 0 can be done assuming the correctness of the previous 
equation: one finds the results shown in figure 14. A power-law fit to the data, assuming 
a critical temperature of 2.02 gives in exponent @ close to 0.6. On the other hand,, the 
data at negative (shown in figure 13) are compatible with zero, apart from finite-volume 
corrections is in the range Z4-2-’). The expected discontinuity of q 2  at E ,  = 0 is quite 
evident. 

In a similar way we show the data for qe as a function of ce in figure 15. As can be seen 
by the naked eye the extrapolation at ce = 0 shows a discontinuity starting at a temperature 
about 1.5. A section of these data at T = 1 is shown in figure 16, as function of E:‘*, 
where for simplicity we use the notation z’/2 instead of sign(z)zln (with z = E ~ ) .  Fitting 
qe we obtain q,& = 0.6, qLn = 0.42 and q,& = 0.59, qhn = 0.42 fitting he. 

The data for qa(O+) and qe(O-) are shown in figure 17 as function of the temperature. 
The extrapolation at ce = 0 is done assuming the presence of a term proportional to ci’z. 
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Figure 17. The exuapolated values for q,(Oc) and q,(O-) 3s a function of temperature. 

0 0.2 0.4 0.5 0.6 1 1.2 

7 

Figure IS. Aqe 3s a function of temperature. The fil is a power af (TIT. - 1) and gives an 
exponent 2.2. ~~. 

Only at temperatures around 1.5 or less do these two functions become different in a sensible 
way. 

In figure 18 we show the value of Aqe as function of the temp&ature. Aqe is compatible 
with zero at temperature greater than 1.6. An indicative fit as a power of (TIT, - 1) gives 
an exponent 2.2. The fit is not reliable, because we do not have data close to the critical 
point, however this behaviour is compatible with the one expected from the renormalization 
group (we recall that the theoretical predictions are that the exponent should be equal to 
1 - a). The apparent vanishing of the discontinity near the critical point is just what is 
expected from the known values of the critical exponents. 

6. Conclusions 

In this work we have shown a numerical method which allows large systems in finite- 
dimensional spin glasses to be studied, testing explicit predictions within replica broken 
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theory. By coupling two replicas we can avoid the problem of the enormous computational 
time needed to thermalize large samples. In fact, with a finite coupling E we are able to 
restore self-averaging and to avoid the problem of thermalization within a very complex 
landscape with many minima. 

We have introduced the energy overlap which gives information about the nature of 
different states which equally contribute to the partition function. The existence of at least 
two states not differing by inversion of local compact domains gives support to the common 
mean-field picture of several states which are far one from each other in phase space by a 
finite distance. 

We have used some new critical exponents 5 which we hope could be estimated in 
future within spin-glass field theory. Its precise determination within the spin-glass phase 
would be important for a precise understanding of short-range spin glasses. The ideas we 
have introduced in this work can be tested for small systems by means of finite-size scaling 
of the tails. These results are presented in a forthcoming work [IO]. 

All our results give support to a complex landscape in the case of four-dimensional 
king spin glasses reminiscent of what we know in mean-field theory. This method can 
also be applied to study other short-range models and we hope it will give very interesting 
results in the three-dimensional case. 

G Parisi and F Ritorl 
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